Hyperpolarized xenon-based molecular sensors for label-free detection of analytes.
نویسندگان
چکیده
Nuclear magnetic resonance (NMR) can reveal the chemical constituents of a complex mixture without resorting to chemical modification, separation, or other perturbation. Recently, we and others have developed magnetic resonance agents that report on the presence of dilute analytes by proportionately altering the response of a more abundant or easily detected species, a form of amplification. One example of such a sensing medium is xenon gas, which is chemically inert and can be optically hyperpolarized, a process that enhances its NMR signal by up to 5 orders of magnitude. Here, we use a combinatorial synthetic approach to produce xenon magnetic resonance sensors that respond to small molecule analytes. The sensor responds to the ligand by producing a small chemical shift change in the Xe NMR spectrum. We demonstrate this technique for the dye, Rhodamine 6G, for which we have an independent optical assay to verify binding. We thus demonstrate that specific binding of a small molecule can produce a xenon chemical shift change, suggesting a general approach to the production of xenon sensors targeted to small molecule analytes for in vitro assays or molecular imaging in vivo.
منابع مشابه
Label-free electrochemical biosensors for food and drug application
In food sector, there is a huge demand for rapid, reliable, user & eco-friendly biosensors to analyse the quality and safety of food products. Biosensor based methodology depends upon the recognition of a specific antigens or receptors by corresponding antibodies, aptamers or high-affinity ligands. The first scientifically commercialised sensors were the electrochemical sensors used for the ana...
متن کاملLabel-free electrochemical biosensors for food and drug application
In food sector, there is a huge demand for rapid, reliable, user & eco-friendly biosensors to analyse the quality and safety of food products. Biosensor based methodology depends upon the recognition of a specific antigens or receptors by corresponding antibodies, aptamers or high-affinity ligands. The first scientifically commercialised sensors were the electrochemical sensors used for the ana...
متن کاملMRI thermometry based on encapsulated hyperpolarized xenon.
A new approach to MRI thermometry using encapsulated hyperpolarized xenon is demonstrated. The method is based on the temperature dependent chemical shift of hyperpolarized xenon in a cryptophane-A cage. This shift is linear with a slope of 0.29 ppm °C(-1) which is perceptibly higher than the shift of the proton resonance frequency of water (ca. 0.01 ppm °C(-1)) that is currently used for MRI t...
متن کاملBand-selective chemical exchange saturation transfer imaging with hyperpolarized xenon-based molecular sensors.
Molecular imaging based on saturation transfer in exchanging systems is a tool for amplified and chemically specific magnetic resonance imaging. Xenon-based molecular sensors are a promising category of molecular imaging agents in which chemical exchange of dissolved xenon between its bulk and agent-bound phases has been use to achieve sub-picomolar detection sensitivity. Control over the satur...
متن کاملCryptophane Derivatives as Gas Sensors and Hyperpolarized Xenon-129 Biosensors
ABSTRACT CRYPTOPHANE DERIVATIVES AS GAS SENSORS AND HYPERPOLARIZED XENON-129 BIOSENSORS Najat S. Khan Professor Ivan J. Dmochowski This thesis describes the progress in the development of cryptophanes for three different applications: encapsulation of noble gases, 129Xe NMR biosensing for cancer detection, and the construction of molecular devices. A new water-soluble organic host molecule, tri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 136 1 شماره
صفحات -
تاریخ انتشار 2014